Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa
نویسندگان
چکیده
Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs) to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also largely dependent upon a functional flagellum. Taken together, the flagellum is herein presented for the first time as the main organelle of planktonic bacteria responsible for mediating NET release. Furthermore, flagellar motility, rather than binding of the flagellum to flagellum-sensing receptors on host cells, is required for P. aeruginosa to induce NET release.
منابع مشابه
Neutrophil extracellular trap release driven by bacterial motility: Relevance to cystic fibrosis lung disease
Neutrophil extracellular trap (NET) formation represents a unique effector function of neutrophils (PMN). The mechanism of NET release in response to bacteria is largely unknown. We studied the process by which Pseudomonas aeruginosa, an opportunistic pathogen, interacts with primary PMNs, and found that flagellar swimming motility of the bacterium is essential for inducing NET extrusion. Cysti...
متن کاملRole of MicroRNAs in BCG Therapy by the Induction of Neutrophil Extracellular Traps in Bladder Cancer
The treatment of bladder cancer is usually performed by Bacillus Calmette-Guerin (BCG) instillation. BCG therapy is a common therapeutic method with fewer side effects compared with chemotherapy, radiotherapy, etc. BCG can also inhibit the progression and recurrence of bladder cancer by inducing apoptosis pathways, arrest cell cycle, autophagy, and neutrophil extracellular traps (NETs) formatio...
متن کاملInhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids
Objective(s):The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods:The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acidonbiofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginos...
متن کاملNeutrophil Extracellular Trap (NET)-Mediated Killing of Pseudomonas aeruginosa: Evidence of Acquired Resistance within the CF Airway, Independent of CFTR
The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Rece...
متن کاملDistinct susceptibilities of corneal Pseudomonas aeruginosa clinical isolates to neutrophil extracellular trap-mediated immunity.
Ocular bacterial keratitis, often associated with Pseudomonas aeruginosa bacterial infection, commonly occurs in contact lens wearers and may lead to vision impairment. In this study, we analyzed the contribution of neutrophil extracellular traps (NETs) to the mediation of protection during ocular keratitis. Both invasive and cytotoxic P. aeruginosa clinical isolates induced NET release by neut...
متن کامل